Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611207

RESUMO

The proliferation of polymer science and technology in recent decades has been remarkable, with synthetic polymers derived predominantly from petroleum-based sources dominating the market. However, concerns about their environmental impacts and the finite nature of fossil resources have sparked interest in sustainable alternatives. Bio-based polymers, derived from renewable sources such as plants and microbes, offer promise in addressing these challenges. This review provides an overview of bio-based polymers, discussing their production methods, properties, and potential applications. Specifically, it explores prominent examples including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and polyhydroxy polyamides (PHPAs). Despite their current limited market share, the growing awareness of environmental issues and advancements in technology are driving increased demand for bio-based polymers, positioning them as essential components in the transition towards a more sustainable future.

2.
Polymers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111995

RESUMO

Polylactic acid (PLA) is one of the most important biopolymers employed on the market due to its good mechanical strength and barrier properties. On the other hand, this material presents a rather low flexibility, limiting its employment. The valorization of bio-based agro-food waste for the modification of bioplastics is a highly appealing approach for the replacement of petrol-based materials. The aim of this work is to employ cutin fatty acids derived from a biopolymer (i.e., cutin), present in waste tomato peels and its bio-based derivatives as new plasticizers to enhance PLA flexibility. In particular, pure 10,16-dihydroxy hexadecanoic acid was extracted and isolated from tomato peels and then functionalized to give the desired compounds. All the molecules developed in this study were characterized by NMR and ESI-MS. Blends at different concentrations (10, 20, 30, and 40% w/w) the flexibility (Tg measurements with differential scanning calorimetry-DSC) of the final material. Furthermore, the physical behavior of two blends obtained by mechanical mixing of PLA and 16-methoxy,16-oxohexadecane-1,7-diyl diacetate was investigated through thermal and tensile tests. The data collected by DSC show a lowering in the Tg of all the blends of PLA with functionalized fatty acids, in comparison with pure PLA. Lastly, the tensile tests highlighted how PLA blended with 16-methoxy,16-oxohexadecane-1,7-diyl diacetate (20% w/w) can efficiently enhance its flexibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...